MOST ENGINEERS I KNOW dislike talking about “the social responsibilities of engineers.” They have a similar reaction to talk of “social justice” as a criterion for evaluating engineering work. They consider such uses of the word “social” to be overly political, faddish, fuzzy or otherwise inappropriate in any discussion of engineering. Many non-engineers take these reactions to confirm their stereotype of engineers: politically conservative, socially backward, intellectually stunted. I think there is a better explanation—one that may help us, both engineers and non-engineers, understand engineering better.

The term social responsibility comes to engineering from business. There it responds to the thesis—as associated with the economist Milton Friedman since 1970—that the only responsibility of business is to make as much money as legally possible without fraud or coercion. Those who appeal to “the social responsibilities of business” do so to remind business that it has responsibilities beyond the economic, for example, to contribute to local charities or to take account of worker safety in an overseas plant even when local laws do not require it. The appeal to social responsibility is supposed to encourage acts beyond the moral (and legal) minimum.

The term social justice has a different origin. It first appeared in Catholic social teaching about 150 years ago. Distributive justice, corrective justice and criminal justice apply to everyone. Social justice was meant to emphasize the special needs of the poor and others less able than most to protect themselves. It was to suggest not mere equality of rights or fair treatment of everyone but “solidarity with the downtrodden,” and programs for improving the condition of “the least among you” (Cullen et al., 2007).

Both terms, social responsibility and social justice, are controversial within their normal domain. That is one reason not to bring them into engineering. Engineering has enough controversy of its own (concerning quality, risk, sustainability, and so on). But there is a better reason to bring neither social responsibility nor social justice into engineering: bringing these terms in would add nothing to the responsibilities that engineers already accept as part of their professional responsibilities. Indeed, bringing these terms into engineering would instead suggest that engineers should do less than they are already doing; that is, that responsibilities of engineers are no greater than the organizations for which they work.

How are we to determine the professional responsibilities of engineers? A good starting point is PEO’s own Code of Ethics, an Ontario statute governing all of the province’s practising engineers. The obvious provision relevant to social responsibility and social justice is subsection 2.i: “[A practitioner shall] regard the practitioner’s duty to public welfare as paramount.” This subsection is more demanding than any statement of business’ social responsibilities that I know of. It requires practising engineers to give priority to the public welfare. An engineer who fails to put the public’s welfare first in professional work fails to satisfy a minimal requirement of engineering. A social responsibility (whatever it is, exactly) is something less than a duty or requirement (Davis, 2012).

Turning to the Code of Ethics of Engineers Canada, we find its first principle, although similar to the PEO principle just quoted, is even more demanding. It requires professional engineers not only to “hold paramount the safety, health and welfare of the public” but also to “[hold paramount] the protection of the environment and promote health and safety within the workplace.” If we assume (as I think we should) that the public’s safety and health are part of what PEO’s code means by “welfare,” the first principle of Engineers Canada’s code adds to PEO’s obligation two others: protection of the environment (another paramount requirement), and promotion of workplace safety.

That is not all the Engineers Canada Code of Ethics has to say that is relevant to social respon-
sibility or social justice. Its principle 5 requires professional engineers to “conduct themselves with equity, fairness, courtesy and good faith towards clients, colleagues and others...” Whatever “equity” is, it is more than mere “fairness,” and whoever “others” covers, it covers more than clients and colleagues. Principle 8 adds that engineers shall also “[be] aware of and ensure that clients and employers are made aware of societal and environmental consequences of actions or projects....”

Much the same requirements can be found in engineering codes outside Canada, for example, south of the border in the Code of Ethics of the National Society of Professional Engineers (NSPE, 2007), across the Atlantic in the Code of Conduct of the European Federation of National Engineering Associations (FEANI, 2009), and even across the Pacific in the Asian Declaration on Engineering Ethics (2004). There are, of course, differences between these codes (depending in part on when the code was last revised, on the state of ongoing discussions within engineering, on whether the code is to be enforced by law, and so on). So, for example, the NSPE code includes a provision (III.2.d) that encourages engineers “to adhere to the principles of sustainable development in order to protect the environment for future generations” (a provision that began entering engineering codes in the 1990s). The Asian declaration includes something similar. But, like the Canadian codes, FEANI’s does not.

On any reasonable reading of the paramount provisions, the Canadian codes cover most, if not all, of the subjects that social responsibility is supposed to cover. What is paramount for engineers is not profit, whether their client’s, employer’s, or their own, but the public welfare. While public welfare is a very general term, allowing much room for interpretation, it certainly includes health, safety and other material conditions in society at large.

The relation of the two Canadian codes to social justice is less obvious. So, assume (as seems probable) that, all else being equal, a dollar spent improving the welfare of the downtrodden is likely to add considerably more to overall welfare than an equal amount spent on anyone else. Looking after the least well-off would, then, all else equal, be the most efficient way to improve the public welfare. For example, a small improvement in the safety of the cheapest cars should, all else equal, save many more lives than an equal improvement in the safety of expensive cars—in part at least because there are many more cheap cars.

This point is not a mere hypothetical. If we consider the material well-being of the least well-off over the last 150 years, there is no question that it has improved considerably (and more than the welfare of the best-off has): life span is longer; health is better; hunger is rarer, and so on. Much remains to do but much of what has been done is in large part the work of engineers: fewer industrial accidents, cleaner air, improved water supply, and so on.

Measured by achievement, not intention, might we not say that engineers are the true social revolutionaries of the last 150 years? Indeed, should we not say that social revolution (of that sort at least) is part of the ordinary work of engineers?

Of course, the way engineers have made their social revolution does not look much like revolution. Engineering tends to change life slowly and in small ways, for example, by increasing the speed with which a boiler shuts down when the water level drops too low. Engineering changes also tend to be incorporated into technical designs, standards and procedures rather than in the memorable phrasing of a public declaration.

So, those who call on engineers to exhibit social responsibility or to contribute to social justice make at least two mistakes. The first is overlooking how much engineers are already doing. The second is failing to understand that engineers, though already committed to socially responsible engineering and social justice, probably cannot do much more without better tools. Any engineer worthy of the name would be happy to invent something to protect the public or improve the welfare of the poor. The reason most engineers don’t (when they don’t) is that they lack the tools necessary for it. For example, an engineer who wants to design an environmentally neutral component for a cellphone needs to know not only the environmental effect of how the materials for that component are mined, shipped and shaped, but also the environmental effect of how the component will be used and disposed of. That is, he or she needs a system that can be relied on to track such information, evaluate it, and rate cellphone components accordingly—not only for the cellphone being worked on, but also to compete with or replace a system that standardizes cellphone information in the way much safety or environmental information is now standardized.

Such a system is never the work of one engineer. Some standards are the work of government agencies; some, the work of the standard-writing bodies of national or international engineering societies; some, the work of non-governmental interdisciplinary bodies, such as the International Organization for Standardization (ISO). In short, the work of making
it possible for engineers to show more social responsibility or to do more for social justice is itself a social undertaking, not something usefully assigned to an individual engineer. Those who want engineers to be more socially responsible or to contribute more to social justice should focus on providing engineers with better tools for that work. Engineers can certainly use help in carrying out their professional responsibilities. No engineer practices alone.

Michael Davis is a professor of philosophy, humanities department, and the senior fellow, Center for the Study of Ethics in the Professions, Illinois Institute of Technology, Chicago.

REFERENCES
Davis, M. “’Ain’t no one here but us social forces’: Constructing the professional responsibility of engineers.” Science and Engineering Ethics, 18 (Winter 2012), p. 13-34.

BUILDING AN ENGINEERING RENAISSANCE IN ONTARIO By Janusz Kozinski, PhD, P.Eng., and Eddy Evans

The multi-disciplinary undergraduate and graduate students that make up York University’s Rover Team hoist the rover that they entered into NASA’s Lunarobotics Mining Competition and Mars Society’s University Rover Challenge.

ENGINEERING EDUCATION should expand technical knowledge, facilitate interdisciplinary learning and foster creative thinking. In Ontario and Canada, we have been successful, and we continue to make significant progress, in the first challenge. However, we have neither broadened the engineering curriculum enough nor given students adequate opportunity to express their creativity.

The engineering education system is not producing the type of graduates Canada needs to compete on the world stage. And it’s losing some of the best and the brightest, particularly women, to rival disciplines, such as medicine or biotechnology, that offer a clearer path to changing lives for the better.

Thomas Jefferson drafted America’s Declaration of Independence from the comfort and convenience of the swivel chair he created. Like renaissance women and men before and since, Jefferson’s extraordinary abilities did not simply coexist in his mind. Benjamin Franklin read Jefferson’s drafts and looked out onto the horizon for inspiration with the help of the bifocal lenses he invented. Another great North American, Canada’s Sandford Fleming was cut from a similar cloth as his renaissance cousins south of the 49th parallel. One of the first truly global Canadian engineers, Fleming created the time zones that bind us together in order and harmony, and applied his artistic talents to the design of Canada’s first postage stamp, as familiar back then as the Apple logo is today.

It’s no coincidence that many engineers who change the world possess not just a technical brilliance but also an acute understanding of what it is to be human, gained from their pursuit of knowledge of all aspects of life. An inquisitive and sophisticated engineer will be a better engineer, and one best placed to succeed in conquering the challenges we face. Yahoo! CEO Marissa Mayer is a remarkable role model for entrepreneurial engineers regardless of gender. She’s also an accomplished ballet dancer who performed the Nutcracker while studying engineering at Stanford. Canadian astronaut and engineer Julie Payette speaks six languages, and is also a pianist and singer, performing with the Montreal Symphony Orchestra and Place de la Vocale de Bâle in Switzerland.

We must offer engineering students an academic timetable that integrates extracurricular activities rather than forcing them down a rigid academic path that may restrict their creative opportunities.
“The Macintosh turned out so well because the people working on it were musicians, artists, poets and historians—who also happened to be excellent computer scientists,” Steve Jobs once told *The New York Times*.

CORE SKILLS

At the turn of this century, “The Future of Engineering Education” (Rugarcia et al., 2000) proposed seven core skills that engineers will need to master to flourish in a constantly changing world:

1. independent, interdependent and lifetime skills;
2. problem-solving, critical-thinking and creative-thinking skills;
3. interpersonal and teamwork skills;
4. communications skills;
5. self-assessment skills;
6. integrative and global-thinking skills; and
7. change management.

Similarly, in their 2009 article, “A global engineer for the global community,” Adrian Chan, PhD, P.Eng., and Jonathan Fishbein led an effort to define the global engineer:

1. superior communication skills and understanding across different cultures and languages;
2. a facility for multi-disciplinary and interdisciplinary teamwork;
3. a well-developed sense of social responsibility and ethics, with due consideration in his/her personal and professional activities;
4. being entrepreneurial; and
5. an ability to deal with complexity and systems thinking.

Both these studies describe the modern-day renaissance engineer. The engineers of the future–renaissance engineers–need to not only be able to adopt new scientific discoveries, but also to be innovators, entrepreneurs, integrators, stewards of the environment, agents of change and excellent communicators. They must be culturally sensitive and socially responsible as well.

We must be conscious of the tough choices required to realize this bold vision and to recognize that it must include women and people of every background.

SYSTEM NOT KEEPING PACE

The engineering education system is not keeping pace with rapid societal shifts. While the world has changed faster than expected, engineering education reform has moved at a snail’s pace. We risk falling further behind if we do not act.

Engineering education remains rooted firmly in the 20th century. We remain hunkered down in an educational model that’s increasingly not fit for purpose. In our pursuit of technical excellence we have allowed the postsecondary engineering pedagogical model to become too narrow and too unresponsive to the needs of both students and employers.

This is not a message that is coming from within some kind of academic bubble. Last year, Google’s Eric Schmidt spoke about the need to apply the lessons of the 19th century when the disciplines of engineering, science and art weren’t rivals but were driving progress in unison.

“The Victorian era was a time when the same people wrote poetry and built bridges…Lewis Carroll didn’t just write one of the classic fairy tales of all time. He was also a mathematics tutor at Oxford. James Clerk Maxwell was described by Einstein as among the best physicists since Newton—but was also a published poet,” Schmidt told a conference in Edinburgh last year (MacTaggart).

Leaders in engineering education have a choice. They can make piecemeal changes toward a broader curriculum and hope it will be enough—the quiet life option. Or they can embrace a radical overhaul of engineering education.

As Rugaria et al. pointed out: “Although their content has changed in some ways and the students use calculators and computers instead of slide rules, many engineering classes in 1999 are taught in exactly the same way that engineering classes in 1959 were taught.” Today’s students use iPads and 3D printers, but we have not moved on—or nearly enough—from the 1959 model.

As educators, we must take risks and exercise our responsibility to make tough choices about how we approach education.

The Lassonde School of Engineering was created at York University to be the home of this renaissance. We call it Renaissance Engineering and we’ve trademarked the term. This sets the bar high and makes a statement about the scale of our commitment and our reputational investment. This is our response to the challenge of recrafting engineering education. While this has been talked about in symposiums for years, we want to make it happen.

The government of Ontario is supporting this vision with a $50-million investment in a new facility to be built around the concept of Renaissance Engineering. This builds on a transformative gift of $25 million from mining entrepreneur Pierre Lassonde, matched by an investment of $25 million from York University. We are embarking on a campaign to raise a further $150 million from the private sector to create a new engineering school with an overall investment of $250 million.
NEW PRIORITIES
To implement our vision of renaissance engineers we are focusing on three initial priorities: admissions, curriculum content and curriculum delivery.

Admissions policies for engineering faculties unnecessarily shut out some of our most creative minds and narrow our talent pool. At the Lassonde School we plan to have applicants draft a statement or submit a video explaining why they want to join us. This will help us distinguish between the top applicants and give us the chance to consider those who may be just below the grade cut-off but have creative minds and the potential to flourish in the right environment.

We’re not the first to take this step. Other Ontario universities have also committed to creating a more sophisticated admissions system for engineering courses while maintaining fair selection procedures.

If we are to credibly expand the talent pool to include more students with breadth and depth of talent, we must be prepared to take risks with our entry criteria. Reaching out to students with diverse demographic and academic profiles is essential. We must also invest time and resources in a process that is receptive—not resistant—to well-rounded applicants. In return, we must offer them an academic pathway that broadens rather than narrows their thirst for enquiry.

We must also recognize that drop-out rates in engineering are too high. In some cases, it’s not that students are not cut out for engineering, it’s just that they may not be cut out for the learning experience we offer them. Too often, we may be forcing a round plug into a square hole by imposing a one-size-fits-all model.

This brings us to the second element of our challenge: changing the curriculum to focus on interdisciplinary learning.

The Lassonde School is forming strategic academic partnerships with Osgoode Hall Law School and the Schulich School of Business at York to enable students to acquire excellent technical and scientific training while gaining sophisticated business skills and a deep knowledge of relevant legal subjects. This is not a case of adding in a few lectures, guest lectures or extra courses here and there. This must be and will be fully integrated into the curriculum.

Students at the Lassonde School will take business and law courses in their first year and continue to study these disciplines so that they have the option after graduating with an engineering degree to add a law or business degree with two years of additional study. As well, students will be exposed to transdisciplinary learning that reaches out beyond the confines of the campus to involve not just other faculties but also industry, government and the community.

SHifting CURRiCulum DELiVERY
Thirdly, there needs to be a radical shift in curriculum delivery. Many engineers may not look back fondly on the hours they spent in lecture halls hurriedly making notes as a professor engaged in a monologue at the front of the room. We cannot justify this teaching method on the basis of some kind of rite of passage unless we can prove it is the best and only way to impart knowledge.

The “classroom flip,” as we call it, turns tradition on its head. Students will be able to choose when and how they view lectures and study materials—at home, in a café or in one of our specially designed workspaces in our new building. In this model, students will be familiar with the material before they come to class, where they will discuss the concepts they have learned, absorb ideas from each other, and engage with professors and industry mentors. This student-centric approach will be integrated into the design of our new building to optimize this new type of learning model, including a focus on breaking down barriers between students and professors to create a truly interactive environment.

This freedom involves a huge investment in students, who will have to take responsibility for their learning. The pursuit of knowledge will require a high degree of commitment from students. To become renaissance engineers, students will have to be entrepreneurial about their learning and career development.

We have been stranded at a crossroads in engineering education for too long, knowing that we need to change but being unable—and at times unwilling—to chart a different course. We can continue to talk about a new engineering education system or we can start the journey.

Qui audet adipiscitur. He (or she) who dares, wins. Ontario needs to be bold to win the future for engineering in our province.Ξ

Janusz Kozinski, PhD, P.Eng., is dean, and Eddy Evans is communications strategist, The Lassonde School of Engineering, York University, Toronto.

REFERENCES